Faculty of Engineering- ShoubraMathematicsNat. and Math. Sci. DepartmentJanuary 2002Answer the following questions:Time: 3 Hours1Solve the following P.D.E:(a) $u_x - 2u_y - u = 0$, $u(0, y) = 3e^{2y}$ (b) $9u_{xx} - 6u_{xy} + u_{yy} + u_x - u_y + 2u = 0$ (c) $u_{tt} - 4u_{xx} = 0$, $0 < x < 1$ B.C $u(0,t) = u(1,t) = 0$ I.C $u(x,0) = x + 1$, $u_t(x,0) = x$.2Solve the LP problem:Maximize $f = 3x + y + 4z$ $s.t$ $x + y + 2z \le 18$ $2x + 3y + 2z = 18$ $x + 2y + 2z \ge 6$, $x, y, z \ge 0$.3(a)Find the exponential curve that fits the points: $(0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.8, 3.2), (1, 3.6).$ (b)Using the inverse interpolation, find a root to the equation: $x^4 + x - 1 = 0$ in the interval $[0.6, 0.9]$.4(a)Using Taylor's method, solve the differential equation: $y^ xy^2 - y = 0, y(1) = 1.$ (b)Solve the system of equations: $2x + y + z = 4$ $x + 3y - 3z = 1$ $x + y + 3z = 5$ 5(a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $y(x, y)$ such that the function $y = u + iy$	Za	gazig University- Banha Branch	2 nd Year: Civil Engineering
Nat. and Math. Sci. DepartmentJanuary 2002Answer the following questions:Time: 3 Hours1Solve the following P.D.E:(a) $u_x - 2u_y - u = 0$, $u(0, y) = 3e^{2y}$ (b) $9u_{xx} - 6u_{xy} + u_{yy} + u_x - u_y + 2u = 0$ (c) $u_{tt} - 4u_{xx} = 0$, $0 < x < 1$ B.C $u(0,t) = u(1,t) = 0$ I.C $u(x,0) = x + 1$, $u_t(x,0) = x$.2Solve the LP problem:Maximize $f = 3x + y + 4z$ s.t $x + y + 2z \le 18$ $2x + 3y + 2z = 18$ $x + 2y + 2z \ge 6$, $x, y, z \ge 0$.3(a)Find the exponential curve that fits the points: $(0, 2, 1, 4), (0, 4, 2), (0.6, 2.5), (0.8, 3.2), (1, 3.6).$ (b)Using the inverse interpolation, find a root to the equation: $x^4 + x - 1 = 0$ in the interval $[0.6, 0.9]$.4(a)Using Taylor's method, solve the differential equation: $y^{-}xy^{2} - y = 0, y(1) = 1.$ (b)Solve the system of equations: $2x + y + z = 4$ $x + 3y - 3z = 1$ $x + y + 3z = 5$ 5(a)Show that the function $u(x,y) = 2x + e^{x} \cos y$ is harmonic and find its conjugate function $u(x, y)$ such that the function $w = u + iy$	Faculty of Engineering- Shoubra		Mathematics
Answer the following questions:Time: 3 Hours1Solve the following P.D.E:(a) $u_x - 2u_y - u = 0$, $u(0, y) = 3e^{2y}$ (b) $9u_{xx} - 6u_{xy} + u_{yy} + u_x - u_y + 2u = 0$ (c) $u_{tt} - 4u_{xx} = 0$, $0 < x < 1$ B.C $u(0,t) = u(1,t) = 0$ I.C $u(x,0) = x + 1$, $u_t(x,0) = x$.2Solve the LP problem:Maximize $f = 3x + y + 4z$ s.t $x + y + 2z \le 18$ $2x + 3y + 2z = 18$ $x + 2y + 2z \ge 6$, $x, y, z \ge 0$.3(a)Find the exponential curve that fits the points: $(0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.8, 3.2), (1, 3.6).$ (b)Using the inverse interpolation, find a root to the equation: $x^4 + x - 1 = 0$ in the interval $[0.6, 0.9]$.4(a)Using Taylor's method, solve the differential equation: $y^2 - y = 0, y(1) = 1.$ (b)Solve the system of equations: $2x + y + z = 4$ $x + 3y - 3z = 1$ $x + y + 3z = 5$ 5(a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find is conjugate function $y(x, y)$ such that the function $y = u + iy$	Nat. and Math. Sci. Department		January 2002
1 Solve the following P.D.E: (a) $u_x - 2u_y - u = 0$, $u(0, y) = 3e^{2y}$ (b) $9u_{xx} - 6u_{xy} + u_{yy} + u_x - u_y + 2u = 0$ (c) $u_{tt} - 4u_{xx} = 0$, $0 < x < 1$ B.C $u(0,t) = u(1,t) = 0$ I.C $u(x,0) = x + 1$, $u_t(x,0) = x$. 2 Solve the LP problem: Maximize $f = 3x + y + 4z$ s.t $x + y + 2z \le 18$ 2x + 3y + 2z = 18 $x + 2y + 2z \ge 6$, $x, y, z \ge 0$. 3 (a)Find the exponential curve that fits the points: (0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.8, 3.2), (1, 3.6). (b)Using the inverse interpolation, find a root to the equation: $x^4 + x - 1 = 0$ in the interval [0.6, 0.9]. 4 (a)Using Taylor's method, solve the differential equation: $y^{-}xy^2 - y = 0$, $y(1) = 1$. (b)Solve the system of equations: $2x + y + z = 4$ x + 3y - 3z = 1 x + y + 3z = 5 5 (a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $y(x, y)$ such that the function $w = u + iy$		Answer the following questions:	Time: 3 Hours
(a) $u_x - 2u_y - u = 0$, $u(0, y) = 3e^{2y}$ (b) $9u_{xx} - 6u_{xy} + u_{yy} + u_x - u_y + 2u = 0$ (c) $u_{tt} - 4u_{xx} = 0$, $0 < x < 1$ B.C $u(0,t) = u(1,t) = 0$ I.C $u(x,0) = x + 1$, $u_t(x,0) = x$. 2 Solve the LP problem: Maximize $f = 3x + y + 4z$ s.t $x + y + 2z \le 18$ 2x + 3y + 2z = 18 $x + 2y + 2z \ge 6$, $x, y, z \ge 0$. 3 (a)Find the exponential curve that fits the points: (0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.8, 3.2), (1, 3.6). (b)Using the inverse interpolation, find a root to the equation: $x^4 + x - 1 = 0$ in the interval [0.6, 0.9]. 4 (a)Using Taylor's method, solve the differential equation: $y^2 - xy^2 - y = 0$, $y(1) = 1$. (b)Solve the system of equations: $2x + y + z = 4$ x + 3y - 3z = 1 x + y + 3z = 5 5 (a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $y(x, y)$ such that the function $w = u + iy$	1	Solve the following P.D.E:	
(b) $9u_{xx} - 6u_{xy} + u_{yy} + u_x - u_y + 2u = 0$ (c) $u_{tt} - 4u_{xx} = 0$, $0 < x < 1$ B.C $u(0,t) = u(1,t) = 0$ I.C $u(x,0) = x + 1$, $u_t(x,0) = x$. 2 Solve the LP problem: Maximize $f = 3x + y + 4z$ s.t $x + y + 2z \le 18$ 2x + 3y + 2z = 18 $x + 2y + 2z \ge 6$, $x, y, z \ge 0$. 3 (a)Find the exponential curve that fits the points: (0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.8, 3.2), (1, 3.6). (b)Using the inverse interpolation, find a root to the equation: $x^4 + x - 1 = 0$ in the interval [0.6, 0.9]. 4 (a)Using Taylor's method, solve the differential equation: $y^2 - xy^2 - y = 0$, $y(1) = 1$. (b)Solve the system of equations: $2x + y + z = 4$ x + 3y - 3z = 1 x + y + 3z = 5 5 (a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $v(x, y)$ such that the function $w = u + iy$		(a) $u_x - 2u_y - u = 0$, $u(0, y) = 3e$	2y
(c) $u_{tt} - 4u_{xx} = 0$, $0 < x < 1$ B.C $u(0,t) = u(1,t) = 0$ I.C $u(x,0) = x + 1$, $u_t(x,0) = x$. 2 Solve the LP problem: Maximize $f = 3x + y + 4z$ s.t $x + y + 2z \le 18$ 2x + 3y + 2z = 18 $x + 2y + 2z \ge 6$, $x, y, z \ge 0$. 3 (a)Find the exponential curve that fits the points: (0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.8, 3.2), (1, 3.6). (b)Using the inverse interpolation, find a root to the equation: $x^4 + x - 1 = 0$ in the interval [0.6, 0.9]. 4 (a)Using Taylor's method, solve the differential equation: $y^2 - xy^2 - y = 0$, $y(1) = 1$. (b)Solve the system of equations: $2x + y + z = 4$ x + 3y - 3z = 1 x + y + 3z = 5 5 (a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $y(x, y)$ such that the function $w = u + iy$		(b) $9u_{xx} - 6u_{xy} + u_{yy} + u_x - u_y + u_{yy} + u_y $	+2u = 0
B.C $u(0,t) = u(1,t) = 0$ I.C $u(x,0) = x + 1$, $u_t(x,0) = x$. 2 Solve the LP problem: Maximize $f = 3x + y + 4z$ s.t $x + y + 2z \le 18$ 2x + 3y + 2z = 18 $x + 2y + 2z \ge 6$, $x, y, z \ge 0$. 3 (a)Find the exponential curve that fits the points: (0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.8, 3.2), (1, 3.6). (b)Using the inverse interpolation, find a root to the equation: $x^4 + x - 1 = 0$ in the interval [0.6, 0.9]. 4 (a)Using Taylor's method, solve the differential equation: $y^2 - xy^2 - y = 0$, $y(1) = 1$. (b)Solve the system of equations: $2x + y + z = 4$ x + 3y - 3z = 1 x + y + 3z = 5 5 (a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $y(x,y)$ such that the function $w = u + iy$		(c) $u_{tt} - 4u_{xx} = 0$, $0 < x < 1$	
I.C $u(x,0) = x + 1$, $u_t(x,0) = x$.2Solve the LP problem: Maximize $f = 3x + y + 4z$ s.t $x + y + 2z \le 18$ $2x + 3y + 2z = 18$ $x + 2y + 2z \ge 6$, x, y, $z \ge 0$.3(a)Find the exponential curve that fits the points: $(0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.8, 3.2), (1, 3.6).$ (b)Using the inverse interpolation, find a root to the equation: $x^4 + x - 1 = 0$ in the interval $[0.6, 0.9].$ 4(a)Using Taylor's method, solve the differential equation: $y^2 - y = 0, y(1) = 1.$ (b)Solve the system of equations: $2x + y + z = 4$ $x + 3y - 3z = 1$ $x + y + 3z = 5$ 5(a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $y(x, y)$ such that the function $w = u + iy$		B.C $u(0,t) = u(1,t) = 0$	
2 Solve the LP problem: Maximize $f = 3x + y + 4z$ s.t $x + y + 2z \le 18$ 2x + 3y + 2z = 18 $x + 2y + 2z \ge 6$, $x, y, z \ge 0$. 3 (a)Find the exponential curve that fits the points: (0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.8, 3.2), (1, 3.6). (b)Using the inverse interpolation, find a root to the equation: $x^4 + x - 1 = 0$ in the interval [0.6, 0.9]. 4 (a)Using Taylor's method, solve the differential equation: $y^- xy^2 - y = 0$, $y(1) = 1$. (b)Solve the system of equations: $2x + y + z = 4$ x + 3y - 3z = 1 x + y + 3z = 5 5 (a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $y(x,y)$ such that the function $w = u + iy$		I.C $u(x,0) = x + 1$, $u_t(x,0) = x$	х.
Maximize $f = 3x + y + 4z$ s.t $x + y + 2z \le 18$ 2x + 3y + 2z = 18 $x + 2y + 2z \ge 6$, x, y, $z \ge 0$. 3 (a)Find the exponential curve that fits the points: (0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.8, 3.2), (1, 3.6). (b)Using the inverse interpolation, find a root to the equation: $x^4 + x - 1 = 0$ in the interval [0.6, 0.9]. 4 (a)Using Taylor's method, solve the differential equation: $y^2 - xy^2 - y = 0$, $y(1) = 1$. (b)Solve the system of equations: $2x + y + z = 4$ x + 3y - 3z = 1 x + y + 3z = 5 5 (a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $y(x, y)$ such that the function $w = u + iy$	2	Solve the LP problem:	
s.t $x + y + 2z \le 18$ 2x + 3y + 2z = 18 $x + 2y + 2z \ge 6$, $x, y, z \ge 0$. 3 (a)Find the exponential curve that fits the points: (0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.8, 3.2), (1, 3.6). (b)Using the inverse interpolation, find a root to the equation: $x^4 + x - 1 = 0$ in the interval [0.6, 0.9]. 4 (a)Using Taylor's method, solve the differential equation: $y^-xy^2 - y = 0$, $y(1) = 1$. (b)Solve the system of equations: $2x + y + z = 4$ x + 3y - 3z = 1 x + y + 3z = 5 5 (a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $y(x, y)$ such that the function $w = u + iy$		Maximize $f = 3x + y + 4z$	
$2x + 3y + 2z = 18$ $x + 2y + 2z \ge 6, x, y, z \ge 0.$ 3 (a)Find the exponential curve that fits the points: (0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.8, 3.2), (1, 3.6). (b)Using the inverse interpolation, find a root to the equation: $x^{4} + x - 1 = 0$ in the interval [0.6,0.9]. 4 (a)Using Taylor's method, solve the differential equation: $y^{-}xy^{2} - y = 0, y(1) = 1.$ (b)Solve the system of equations: $2x + y + z = 4$ x + 3y - 3z = 1 $x + y + 3z = 5$ 5 (a)Show that the function $u(x,y) = 2x + e^{x} \cos y$ is harmonic and find its conjugate function $v(x, y)$ such that the function $w = u + iy$		s.t $x + y + 2z \le 18$	
$x + 2y + 2z \ge 6, x, y, z \ge 0.$ 3 (a)Find the exponential curve that fits the points: (0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.8, 3.2), (1, 3.6). (b)Using the inverse interpolation, find a root to the equation: $x^4 + x - 1 = 0$ in the interval [0.6,0.9]. 4 (a)Using Taylor's method, solve the differential equation: $y^2 - xy^2 - y = 0, y(1) = 1.$ (b)Solve the system of equations: $2x + y + z = 4$ x + 3y - 3z = 1 x + y + 3z = 5 5 (a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $y(x, y)$ such that the function $w = u + iy$		2x + 3y + 2z = 18	
3 (a)Find the exponential curve that fits the points: (0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.8, 3.2), (1, 3.6). (b)Using the inverse interpolation, find a root to the equation: $x^4 + x - 1 = 0$ in the interval [0.6,0.9]. 4 (a)Using Taylor's method, solve the differential equation: $y^-xy^2 - y = 0$, $y(1) = 1$. (b)Solve the system of equations: $2x + y + z = 4$ x + 3y - 3z = 1 x + y + 3z = 5 5 (a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $y(x, y)$ such that the function $w = u + iy$		$x + 2y + 2z \ge 6$,	$x, y, z \ge 0.$
(0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.8, 3.2), (1, 3.6). (b)Using the inverse interpolation, find a root to the equation: $x^{4} + x - 1 = 0$ in the interval [0.6,0.9]. 4 (a)Using Taylor's method, solve the differential equation: $y^{-}-xy^{2} - y = 0, y(1) = 1.$ (b)Solve the system of equations: $2x + y + z = 4$ x + 3y - 3z = 1 x + y + 3z = 5 5 (a)Show that the function $u(x,y) = 2x + e^{x} \cos y$ is harmonic and find its conjugate function $y(x, y)$ such that the function $w = u + iy$	3	(a)Find the exponential curve that	fits the points:
(b)Using the inverse interpolation, find a root to the equation: $x^4 + x - 1 = 0$ in the interval [0.6,0.9]. 4 (a)Using Taylor's method, solve the differential equation: $y^-xy^2 - y = 0$, $y(1) = 1$. (b)Solve the system of equations: $2x + y + z = 4$ x + 3y - 3z = 1 x + y + 3z = 5 5 (a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $y(x, y)$ such that the function $w = u + iy$		(0.2, 1.4), (0.4, 2), (0.6, 2.5), (0.6,	8, 3.2), (1, 3.6).
$\frac{x^{4} + x - 1 = 0 \text{ in the interval } [0.6, 0.9].}{4 \text{ (a)Using Taylor's method, solve the differential equation:}}$ $\frac{y^{-}xy^{2} - y = 0, \ y(1) = 1.}{(b)\text{Solve the system of equations:}} 2x + y + z = 4$ $x + 3y - 3z = 1$ $x + y + 3z = 5$ $5 \text{ (a)Show that the function } u(x, y) = 2x + e^{x} \cos y \text{ is harmonic and}$ find its conjugate function $y(x, y)$ such that the function $w = u + iy$		(b)Using the inverse interpolation	, find a root to the equation:
 4 (a)Using Taylor's method, solve the differential equation: y'-xy² - y = 0, y(1) = 1. (b)Solve the system of equations: 2x + y + z = 4 x + 3y - 3z = 1 x + y + 3z = 5 5 (a)Show that the function u(x,y) = 2x + e^x cos y is harmonic and find its conjugate function y(x y) such that the function w = u + iy 		$x^4 + x - 1 = 0$ in the interval [0	.6,0.9].
y'-xy ² - y = 0, y(1) = 1. (b)Solve the system of equations: $2x + y + z = 4$ x + 3y - 3z = 1 x + y + 3z = 5 5 (a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $y(x,y)$ such that the function $w = u + iy$	4	(a)Using Taylor's method, solve t	he differential equation:
(b)Solve the system of equations: $2x + y + z = 4$ x + 3y - 3z = 1 x + y + 3z = 5 5 (a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $v(x,y)$ such that the function $w = u + iy$		$y - xy^2 - y = 0, y(1) = 1.$	
$x + 3y - 3z = 1$ $x + y + 3z = 5$ 5 (a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $v(x,y)$ such that the function $w = u + iy$		(b)Solve the system of equations:	2x + y + z = 4
$x + y + 3z = 5$ 5 (a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $v(x,y)$ such that the function $w = u + iy$			x + 3y - 3z = 1
⁵ (a)Show that the function $u(x,y) = 2x + e^x \cos y$ is harmonic and find its conjugate function $v(x,y)$ such that the function $w = u + iy$			x + y + 3z = 5
find its conjugate function $y(x,y)$ such that the function $w - u + iy$	5	(a)Show that the function $u(x,y) =$	$= 2x + e^{x} \cos y$ is harmonic and
find its conjugate function $v(x,y)$ such that the function $w = u + iv$			
is analytic		is analytic	Such that the function $w = u + iv$
(b)Evaluate the following integrals:		(b)Evaluate the following integral	e.
(b)Evaluate the following integrals. b(z + z) and $z = z = z = z$		(0)Evaluate the following integral	
(i) $\int \frac{\cos z}{2z - 13} dz$ (ii) $\int \frac{\ln(z + e)}{z} dz$ (iii) $\int \frac{\cos z}{(z - \pi)^3} dz$		(i) $\int \frac{\cos z}{2z - 13} dz$ (ii) $\int \frac{\ln(z - z)}{z}$	$\int \frac{\cos z}{C(z-\pi)^3} dz$
where C is the ellipse $ z - 3 + z + 1 = 6$.		where C is the ellipse $ z - 3 + z $	+ 1 = 6.
Good Luck Dr. M.H. Eid			